Clinical and radiological assessment of the effect of low level laser therapy on delayed bone fractures healing

Low level laser has been conducted for treatment of bone fracture on animal and had shown positive results. If laser energy is delivered at optimal dose with appropriate parameters ,it might get best results however a little research in the literature has conducted on the effect of low level laser on human bone fracture. The aim of the study was to assess the radiological and clinical difference of the effect of low level laser therapy on the delayed bone healing of patients with different bone fractures.


Read more on IOP Science or download the PDF»


New insight into how light therapy can speed up burn wound healing

A compelling new study is offering an insight into the mechanism by which a novel form of light therapy can speed the healing of burn injuries. The research indicates the experimental therapy can activate a key protein that stimulates cell growth.


Read more on or download the PDF»

Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-β1


The severity of tissue injury in burn wounds from associated inflammatory and immune sequelae presents a significant clinical management challenge. Among various biophysical wound management approaches, low dose biophotonics treatments, termed Photobiomodulation (PBM) therapy, has gained recent attention.

—Scientific Reports


Treatment of diabetic foot ulcers in a frail population with severe co-morbidities using at-home photobiomodulation laser therapy: a double-blind, randomized, sham-controlled pilot clinical study

Photobiomodulation at home, in addition to standard care, may be effective for the treatment of severe DFUs in frail patients with co-morbidities and is particularly relevant at these times of social distancing. Our preliminary results justify the conduction of a larger clinical trial. NCT01493895.

—Springer Link


Photobiomodulation Therapy for Wound Care: A Potent, Noninvasive, Photoceutical Approach



To provide background and examine evidence for the therapeutic application of light energy treatments for wound healing.


This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care.


After completing this continuing education activity, you should be better able to:

1. Explain the basics of lasers, light-emitting diodes, and light-tissue interactions as they apply to photobiomodulation therapy.

2. Summarize the results of the authors’ literature review of the evidence regarding the therapeutic applications of photobiomodulation treatments for wound healing.


To provide background and examine evidence for the therapeutic applications of light energy treatments for wound healing.


A search was performed in PubMed for peer-reviewed scientific articles published in the last 5 years using the search terms “photobiomodulation therapy” and “low-level laser therapy,” and these terms combined with “wound,” using a “human species” filter. This search yielded 218 articles on photobiomodulation therapy or low-level laser therapy and wounds. Of these, only articles on in vivo wound care using light treatments were specifically included in this review (n = 11).


The wound healing effects of low-dose laser treatments were first described over 50 years ago. Various doses ranging from 0.1 to 10 J/cm2 and wavelengths ranging from 405 to 1,000 nm appear to provide therapeutic benefits for a broad range of chronic wounds. A range of light energy sources from LEDs to lasers have been used and have specific advantages and limitations. There is a lack of consensus on standardized treatment parameters such as wavelengths, dose, and therapeutic outcomes in the reviewed studies, preventing direct comparison and clinical protocol recommendation. An expert opinion based on ongoing research studies and reported literature is offered.


Noninvasive, economical, and multipurpose light devices are an attractive tool for wound management. However, there is an urgent need in the wound care community to develop optimal clinical protocols for use based on well-designed, rigorous clinical research studies.

—Advances in Skin and Wound Care


The Skinny on Fats in Wound Healing

The sequential wound healing cascade promotes optimal repair. However, prolonged or overly vigorous individual phases impede healing. Although most wound therapies focus on initiating the healing process by supplementing growth factors or matrices, the study by Hellmann et al. highlights the role of lipid molecules termed resolvins, specifically RvD1 and RvD2, as promoters of epithelial wound closure.

—Journal of Investigative Dermatology


Noninvasive red and near-infrared wavelength-induced photobiomodulation: promoting impaired cutaneous wound healing

The innumerable intricacies associated with chronic wounds have made the development of new painless, noninvasive, biophysical therapeutic interventions as the focus of current biomedical research. Red and near-infrared light-induced photobiomodulation therapy appears to emerge as a promising drug-free approach for promoting wound healing, reduction in inflammation, pain and restoration of function owing to penetration power in conjunction with their ability to positively modulate the biochemical and molecular responses. This review will describe the physical properties of red and near-infrared light and their interaction with skin and highlight their efficacy of wound repair and regeneration. Near-infrared (800–830 nm) was found to be the most effective and widely studied wavelength range followed by red (630–680 nm) and 904 nm superpulsed light exhibiting beneficial photobiomodulatory effects on impaired dermal wound healing.

—Wiley Online Library