Therapeutic Application of Light and Electromagnetic Fields to Reduce Hyper-Inflammation Triggered by COVID-19


COVID-19 – related morbidity is associated with exaggerated inflammation and cytokine production in the lungs, leading to acute respiratory failure. The cellular mechanisms underlying these so-called ‘cytokine storms’ are regulated through the Toll-like receptor 4 (TLR4) signaling pathway and by ROS (Reactive Oxygen Species). Both light (Photobiomodulation) and magnetic fields (e.g., Pulsed Electro Magnetic Field) stimulation are noninvasive therapies known to confer anti-inflammatory effects and regulate ROS signaling pathways. Here we show that daily exposure to two 10-minute intervals of moderate intensity infra-red light significantly lowered the inflammatory response induced via the TLR4 receptor signaling pathway in human cell cultures. Anti-inflammatory effects were likewise achieved by electromagnetic field exposure of cells to daily 10-minute intervals of either Pulsed Electromagnetic Fields (PEMF), or to Low-Level static magnetic fields. Because current illumination and electromagnetic field therapies have no known side effects, and are already approved for some medical uses, we have here developed protocols for verification in clinical trials of COVID-19 infection. These treatments are affordable, simple to implement, and may help to resolve the acute respiratory distress of COVID-19 patients both in the home and in the hospital.

Download the PDF»

Whole-Organ Transdermal Photobiomodulation (PBM) of COVID-19: A 50-Patient Case Study


A non-randomized 50-person case study of COVID-19 positive patients was conducted employing (for the first time) a regimen of whole-organ deep-tissue transdermal dynamic photobiomodulation (PBM) as a primary (or exclusive) therapeutic modality in the treatment of coronavirus. Therapy sessions comprised algorithmically alternating red (650 nm) and near infrared (850 nm) LEDs with average irradiance of 11 mW/cm2 dynamically sequenced at multiple pulse frequencies. Delivered via 3-D bendable polymeric pads maintaining orthogonal optical incidence to body contours over 1,000 cm2, a single 84-min session concurrently delivered 20 kJ to the sinuses and 15 kJ to each lung at skin temperatures below 42 ◦C. Therapeutic outcomes observed include significant reductions in the duration and severity of disease symptoms. Acute conditions including fever, body aches, and respiratory distress comprising paroxysmal coughing; lung congestion, dyspnea and hypoxia; sinus congestion; acute eye inflammation; and extreme malaise were eliminated in 41/50 patients within 4-days of commencing PBM treatments with 50/50 patients fully recovering within three-weeks with no supplemental oxygen requirements. SpO2 concentrations improved as much as 9 points (average 2.5 points) across the entire study population. The PBM sessions required to completely resolve COVID-19 conditions appears mono- tonically correlated to the time-to-treatment (TTTx) — the delay between the onset of a patient’s symptoms and commencing PBM therapy. In contrast, acute inflammatory symptoms were resolved within 4-days irrespective of TTTx.

Download the PDF»

Evaluation of Adjunctive Photobiomodulation (PBMT) for COVID-19 Pneumonia via Clinical Status and Pulmonary Severity Indices in a Preliminary Trial

 Introduction: The COVID-19 pandemic spread rapidly throughout the world, causing millions of infections, hundreds of thousands of deaths, and overloaded hospitals and intensive care units, with patients in need of critical care management. The initial hallmarks of COVID-19 were cytokine storm and acute respiratory distress syndrome (ARDS). Some patients are asymptomatic and recover spontaneously while others experience progressive symptoms leading to mild, moderate, or serious cases. Many serious cases require admission to intensive care units (ICUs) and ventilation support. The exceptional number of patients who died while receiving optimal medical care and ventilator support remains an enigma and successful treatment strategies remain to be found. 

Case and outcomes: During the period from March 2020 to May 2020, we performed a preliminary clinical trial with a parallel design for the evaluation of PBMT on COVID-19 pneumonia ( identifier: NCT04391712). Before obtaining Institutional Review Board (IRB) approval, the US Food and Drug Administration assessed the MLS scanner-equipped laser and deemed it was a nonsignificant risk device. Subsequently, the IRB, and the Clinical Research Review Committee of the Lowell General Hospital (Massachusetts, USA) approved the clinical protocol for PBMT treatment of COVID-19 pneumonia. All patients provided written informed consent for participation in this trial. A preliminary 10 patient study was approved by the hospital. Patients were assigned to the PBMT group (standard medical care plus adjunctive PBMT) or control group (standard medical care) using the Sealed Envelope computer application (Table 1). There was no masking of the treatment group, and the study was performed in an open-label fashion. Inclusion criteria were: SARS-CoV-2 infection confirmed by nasopharyngeal swab and RT-PCR on an Abbott ID system upon hospitalization, age 18–90 years, and pulmonary compromise requiring oxygen support. Patients had to be able to self-prone or support themselves in a self-sitting position to facilitate the administration of PBMT. Exclusion criteria included patients who required ventilator management, those with autoimmune disorders or inflammatory conditions not related to COVID-19, and pregnancy. The trial was conducted in accordance with the Declaration of Helsinki. 

Conclusion: This study demonstrates the potential benefits of adjunctive PBMT in COVID-19 pneumonia. The use of PBMT in the early stages of severe ARDS in COVID-19 patients may improve pulmonary and clinical status and reduce the need for ventilator support and ICU stay. Adjunctive PBMT may decrease hospital stay and enhance the recovery process. Clinical status improvement was supported by an increase in SpO2 during the treatment sessions, the rapid relief of respiratory symptoms, and improved CXR findings. There was no incidence of mortality or major reported side effects in the PBMT group. The mortality rate was 40% in the control group and 40% of patients continue to experience pulmonary sequelae. The patients in the PBMT group recovered without needing ICU admission or mechanical ventilation. Conversely, 60% of patients in the control group required ICU admission and ventilation. Clinical trials with larger group sizes are necessary to confirm the effects of PBMT on COVID-19 pneumonia 


Early cases of acute infectious respiratory syndrome treated with photobiomodulation, diagnosis and intervention: Two case reports


PBMT using 630 + 660 nm wavelengths transcutaneously at 7 cm above chest area irradiating lungs and heart regions of patients with acute, infectious respiratory syn- drome alleviated their respiratory symptoms, mitigated pulmonary inflammation and hypoxia. PBMT could prevent more severe respiratory distress requiring emergency care and reduce the strain on healthcare. This case report’s clinical experience can be the basis of future research evaluating oxygen saturation levels pre- and post-PBMT.


Adjunct low level laser therapy (LLLT) in a morbidly obese patient with severe COVID-19 pneumonia: A case report

 Introduction: COVID-19 poses a higher risk of complications in obese patients due to low respiratory system compliance, increased inflammatory cytokines, and an activated immune system secondary to excess adiposity. Low level laser therapy (LLLT) has significant anti-inflammatory effects and reduces inflammatory cytokines. It is noninvasive and approved for pain management and musculoskeletal injuries. Data from human and experimental animal models of respiratory tract disease suggests that LLLT reduces inflammation and promotes lung healing. 

Case and outcomes: A morbidly obese 32-year-old Asian female with severe COVID-19 received four consecutive once-daily LLLT sessions via a laser scanner. Pulsed 808 nm and 905 nm laser beams were delivered over the posterior chest for 28 min. The patient was evaluated before and after LLLT by radiological assessment of lung edema (RALE) on chest X-ray, oxygen requirements and saturation, pneumonia severity indices (SMART-COP and Brescia- COVID), blood inflammatory markers (interleukin-6, ferritin, and C-Reactive protein (CRP)). Prior to treatment, oxygen saturation (SpO2) via pulse oximetry was 88%–93% on 5–6 L oxygen. Following LLLT, SpO2 increased to 97%–99% on 1–3 L oxygen. Reductions in RALE score from 8 to 3, Brescia- COVID from 4 to 0, and SMART-COP from 5 to 0 were observed. Interleukin-6 decreased from 45.89 to 11.7 pg/mL, ferritin from 359 to 175 ng/mL, and CRP from 3.04 to 1.43 mg/dL. Post-treatment, the patient noted appreciable improvement in respiratory symptoms. 

Conclusion: Following LLLT our patient showed improvement over a few days in respiratory indices, radiological findings, inflammatory markers, and patient outcomes. This report suggests that adjunct LLLT can be safely combined with conventional treatment in patients with severe COVID-19 and morbid obesity. 


Probable positive effects of the photobiomodulation as an adjunctive treatment in COVID-19: A systematic review


Background: COVID-19, as a newly-emerged viral infection has now spread all over the world after originating in Wuhan, China. Pneumonia is the hallmark of the disease, with dyspnea in half of the patients and acute respiratory distress syndrome (ARDS) in up to one -third of the cases. Pulmonary edema, neutrophilic infiltration, and inflammatory cytokine release are the pathologic signs of this disease. The anti-inflammatory effect of the photobiomodulation (PBM) has been confirmed in many previous studies. Therefore, this review study was conducted to evaluate the direct effect of PBM on the acute lung inflammation or ARDS and also accelerating the regeneration of the damaged tissues. The indirect effects of PBM on modulation of the immune system, increasing the blood flow and oxygenation in other tissues were also considered.

Methodology: The databases of PubMed, Cochrane library, and Google Scholar were searched to find the relevant studies. Keywords included the PBM and related terms, lung inflammation, and COVID-19 -related signs. Studies were categorized with respect to the target tissue, laser parameters, and their results.

Results: Seventeen related papers were included in this review. All of them were in animal models. They showed that the PBM could significantly decrease the pulmonary edema, neutrophil influx, and generation of pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), intracellular adhesion molecule (ICAM), reactive oxygen species (ROS), isoform of nitric oxide synthase (iNOS), and macrophage inflammatory protein 2 (MIP-2)).

Conclusion: Our findings revealed that the PBM could be helpful in reducing the lung inflammation and promoting the regeneration of the damaged tissue. PBM can increase the oxygenation indirectly in order to rehabilitate the affected organs. Thus, the infra-red lasers or light-emitting diodes (LEDs) are recommended in this regard.

Keywords: COVID-19; Laser therapy; Low-level laser therapy; Photobiomodulation; SARS Cov2; Virus.



Photobiomodulation Therapy Combined With Static Magnetic Field in Patients With COVID-19

Coronavirus disease 2019 (COVID-19) is a disease caused by a novel coronavirus called SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). The most characteristic symptom of patients with COVID-19 is respiratory distress, leading to inability to sustain spontaneous breathing. In addition, patients with COVID-19 have dyspnea and respiratory muscle fatigue. Therefore, it is necessary to use strategies that minimize the impact of COVID-19 on the respiratory muscles, accelerating the ventilatory weaning process and optimizing the functional capacity of the involved muscles.

wcg CenterWatch


First successful PBM treatment for COVID-19

This report has presented supportive PBMT in a patient with severe COVID-19 pneumonia. Respiratory indices, radiological findings, oxygen requirements, and patient outcomes improved over several days and without need for a ventilator.

American Journal of Case Reports


The effects of SARS-CoV-2 on alveolar cell and cytokine storm.

Low level laser therapy as a modality to attenuate cytokine storm at multiple levels, enhance recovery, and reduce the use of ventilators in COVID-19

The global pandemic COVID-19 is a contagious disease and its mortality rates ranging from 1% to 5% are likely due to acute respiratory distress syndrome (ARDS), and cytokine storm. A significant proportion of patients who require intubation succumb to the disease, despite the availability of ventilators and the best treatment practices. Researchers worldwide are in search of anti-inflammatory medicines in the hope of finding a cure for COVID-19. Low-level laser therapy (LLLT) has strong, anti-inflammatory effects confirmed by meta-analyses, and it may be therapeutic to ARDS.

Read more on National Institutes of Health or download the PDF»

Photodynamic Therapy for the Treatment of COVID-19

Until now there is no vaccine or reliable treatment for the COVID-19 pandemic. The fundamental mechanisms of non-invasive low-level laser in photobiomodulation (PBM) and photodynamic therapy is to stimulate the mitochondrial respiratory chain where a transient release of non-cytotoxic levels of reactive oxygen species (ROS) will lead to positive modulation of the immune response. As previous studies mentioned that the most important strategy for COVID-19 management is oxygenation and faster rehabilitation of the damaged tissue, antiviral effects, and, finally, reduction or controlling the cytokine storm by reducing inflammatory agents. PBM may be used as adjuvant therapy or even an alternative therapy in all these mechanisms without side effects and drug interactions.

Cairo University